Issue 21, 2014

Green silver nanobioarchitectures with amplified antioxidant and antimicrobial properties

Abstract

Cornelian silver-based architectures were achieved from liposomes, silver nanoparticles (AgNPs) and single-walled carbon nanotubes (SWCNTs) by a “green” bottom-up strategy. Liposomes were prepared by a thin film hydration method and labelled with a natural porphyrin extracted from spinach leaves, cholorophyll a (Chla). Due to its strong visible absorption and fluorescence emission, this phytopigment was used as a spectral sensor to monitor any possible changes occurring in lipid membranes caused by the action of various agents. An aqueous extract from Cornus mas L. fruits was used for AgNP phytosynthesis. Addition of appropriate amounts of phytonanosilver particles and SWCNTs to biomimetic membranes resulted in biohybrid material with good physical stability (ZP = −34 mV) and high antioxidant activity (AA = 97.8%). Moreover, they have been shown to be a strong biocide having diameters of inhibition zones of 18.3 mm, 23.8 mm and 21.6 mm against Escherichia coli ATCC 8738, Staphylococcus aureus ATCC 25923 and Enterococcus faecalis ATCC 29212, respectively. Chla rapidly sensed the modifications that occurred in artificial lipid bilayers as a result of interactions with silver nanoparticles and carbon nanotube surfaces indicating the biohybrid formation, and these results were supported by AFM analysis. The bioconstructed hybrid material consisting of biomimetic membranes, phyto-nanosilver and SWCNTs could be applied as an antimicrobial and antioxidant coating.

Graphical abstract: Green silver nanobioarchitectures with amplified antioxidant and antimicrobial properties

Article information

Article type
Paper
Submitted
17 Feb 2014
Accepted
26 Mar 2014
First published
27 Mar 2014

J. Mater. Chem. B, 2014,2, 3221-3231

Author version available

Green silver nanobioarchitectures with amplified antioxidant and antimicrobial properties

M. E. Barbinta-Patrascu, C. Ungureanu, S. M. Iordache, I. R. Bunghez, N. Badea and I. Rau, J. Mater. Chem. B, 2014, 2, 3221 DOI: 10.1039/C4TB00262H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements