Issue 22, 2014

Effects of 3D nanocomposite bioceramic scaffolds on the immune response

Abstract

The interaction of new nanocomposite mesoporous glass/hydroxyapatite (MGHA) scaffolds with immune cells involved in both innate and acquired immunity has been studied in vitro as an essential aspect of their biocompatibility assessment. Since the immune response can be affected by the degradation products of bioresorbable scaffolds and scaffold surface changes, both processes have been evaluated. No alterations in proliferation and viability of RAW-264.7 macrophage-like cells were detected after culture on MGHA scaffolds which did not induce cell apoptosis. However, a slight cell size decrease and an intracellular calcium content increase were observed after contact of this cell line with MGHA scaffolds or their extracts. Although no changes in the percentages of RAW cells with low and high contents of reactive oxygen species (ROS) are observed by the treatment with 7 day extracts, this study has revealed modifications of these percentages after direct contact with scaffolds and by the treatment with 24 h extracts, related to the high reactivity/bioactivity of this MGHA nanocomposite at initial times. Furthermore, when normal fresh murine spleen cells were used as an experimental model closer to physiological conditions, no significant alterations in the activation of different immune cell subpopulations were detected in the presence of 24 h MGHA extract. MGHA scaffolds did not affect either the spontaneous apoptosis or intracellular cytokine expression (IL-2, IL-10, IFN-γ, and TNF-α) after 24 h treatment. The results obtained in the present study with murine immune cell subpopulations (macrophages, lymphocytes B, lymphocytes T and natural killer cells) support the biocompatibility of the MGHA material and suggest an adequate host tissue response to their scaffolds upon their implantation.

Graphical abstract: Effects of 3D nanocomposite bioceramic scaffolds on the immune response

Article information

Article type
Paper
Submitted
17 Jan 2014
Accepted
28 Mar 2014
First published
31 Mar 2014

J. Mater. Chem. B, 2014,2, 3469-3479

Effects of 3D nanocomposite bioceramic scaffolds on the immune response

M. Cicuéndez, P. Portolés, M. Montes-Casado, I. Izquierdo-Barba, M. Vallet-Regí and M. T. Portolés, J. Mater. Chem. B, 2014, 2, 3469 DOI: 10.1039/C4TB00106K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements