A high efficiency H2S gas sensor material: paper like Fe2O3/graphene nanosheets and structural alignment dependency of device efficiency†
Abstract
Fe2O3/graphene was synthesized successfully by a super critical CO2-assisted thermal method and further made into paper-like nanosheets by directed-flow, vertical assembly of individual Fe2O3/graphene nanosheets under a controlled magnetic field. Characterization of the samples was carried out by both electron microscopy and X-ray photoelectron spectroscopy. The sensor materials outperform many other paper-like materials for H2S gas detection. In addition, vertically and horizontally aligned nanosheets were used as sensing materials to detect H2S gas along with chemiluminescence measurements. Importantly, the nanoscale Fe2O3/graphene sheets with the vertical arrangement are more beneficial than the nanosheets with the horizontal arrangement in terms of sensitivity.