Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 47, 2014
Previous Article Next Article

P-type NaxNi0.22Co0.11Mn0.66O2 materials: linking synthesis with structure and electrochemical performance

Author affiliations

Abstract

P-type layered oxides are promising cathode materials for sodium-ion batteries and a wide variety of compounds have been investigated so far. Nevertheless, detailed studies on how to link synthesis temperature, structure and electrochemistry are still rare. Herein, we present a study on P-type NaxNi0.22Co0.11Mn0.66O2 materials, investigating the influence of synthesis temperature on their structure and electrochemical performance. The change of annealing temperature leads to various materials of different morphologies and either P3-type (700 °C), P3/P2-type (750 °C) or P2-type (800–900 °C) structure. Galvanostatic cycling of P3-type materials revealed high initial capacities but also a high capacity fade per cycle leading to a poor long-term cycling performance. In contrast, pure P2-type NaxNi0.22Co0.11Mn0.66O2, synthesized at 800 °C, exhibits lower initial capacities but a stable cycling performance, underlined by a good rate capability, high coulombic efficiencies and high average discharge capacity (117 mA h g−1) and discharge voltage (3.30 V vs. Na/Na+) for 200 cycles.

Graphical abstract: P-type NaxNi0.22Co0.11Mn0.66O2 materials: linking synthesis with structure and electrochemical performance

Back to tab navigation

Supplementary files

Article information


Submitted
31 Jul 2014
Accepted
29 Sep 2014
First published
31 Oct 2014

This article is Open Access

J. Mater. Chem. A, 2014,2, 20263-20270
Article type
Paper

P-type NaxNi0.22Co0.11Mn0.66O2 materials: linking synthesis with structure and electrochemical performance

L. G. Chagas, D. Buchholz, C. Vaalma, L. Wu and S. Passerini, J. Mater. Chem. A, 2014, 2, 20263
DOI: 10.1039/C4TA03946G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements