Issue 41, 2014

General synthesis of hollow MnO2, Mn3O4 and MnO nanospheres as superior anode materials for lithium ion batteries

Abstract

The use of manganese oxides as promising candidates for anode materials in lithium ion batteries has attracted a significant amount of attention recently. Here, we develop a general approach to synthesize hollow nanospheres of MnO2, Mn3O4 and MnO, using carbon nanospheres as a template and a reagent. Depending on the calcination temperature, time and atmosphere, hollow nanospheres of MnO2 assembled by randomly dispersed nanosheets, or hollow nanospheres of Mn3O4 and MnO composed of aggregated nanoparticles, are produced. The electrochemical properties of the three hollow nanoparticles are investigated in terms of cycling stability and rate capability. They deliver the specific capacities of 840, 1165 or 1515 mA h g−1 after 60 cycles at 100 mA g−1 for MnO2, Mn3O4 and MnO. Even at 500 mA g−1, the reversible capacities could be still kept at 637, 820, and 1050 mA h g−1 after 150 cycles. The outstanding performances might be related with their hollow structure, porous surface and nanoscale size.

Graphical abstract: General synthesis of hollow MnO2, Mn3O4 and MnO nanospheres as superior anode materials for lithium ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
30 Jul 2014
Accepted
22 Aug 2014
First published
27 Aug 2014

J. Mater. Chem. A, 2014,2, 17421-17426

General synthesis of hollow MnO2, Mn3O4 and MnO nanospheres as superior anode materials for lithium ion batteries

J. Yue, X. Gu, L. Chen, N. Wang, X. Jiang, H. Xu, J. Yang and Y. Qian, J. Mater. Chem. A, 2014, 2, 17421 DOI: 10.1039/C4TA03924F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements