Issue 25, 2014

Light-responsive aggregation of β-cyclodextrin covered silica nanoparticles

Abstract

In this article, we report a light-responsive supramolecular system based on the host–guest interaction of β-cyclodextrin covered silica nanoparticles and a bifunctional, noncovalent azobenzene linker in dilute aqueous solution. β-Cyclodextrin was immobilized onto silica nanoparticles either by nucleophilic substitution or by thiol–ene click chemistry. Azobenzene has two isomers which can be converted into each other by alternating irradiation with visible light (λ = 465 nm) and UV light (λ = 350 nm). When using visible light, the trans isomer of the azobenzene moieties on the linker bind to the β-cyclodextrin cavities on the nanoparticle surface leading to aggregation of the nanoparticles. The aggregation is reversible, since irradiation with UV light leads to the formation of the cis isomer of the azobenzene linker, dissociation of the azobenzene and the cyclodextrin, and subsequent dispersion of the nanoparticles. The light-responsive supramolecular system is investigated by using optical density measurements (OD600), DLS and TEM measurements.

Graphical abstract: Light-responsive aggregation of β-cyclodextrin covered silica nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
19 Mar 2014
Accepted
04 Apr 2014
First published
04 Apr 2014

J. Mater. Chem. A, 2014,2, 9587-9593

Light-responsive aggregation of β-cyclodextrin covered silica nanoparticles

J. A. Krings, B. Vonhören, P. Tegeder, V. Siozios, M. Peterlechner and B. J. Ravoo, J. Mater. Chem. A, 2014, 2, 9587 DOI: 10.1039/C4TA01359J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements