Polyimide matrix-enhanced cross-linked gel separator with three-dimensional heat-resistance skeleton for high-safety and high-power lithium ion batteries†
Abstract
To develop a kind of gel polymer electrolyte with high ion conductivity and good mechanical strength and thermal stability, a polyimide (PI) matrix-enhanced cross-linked gel separator is designed and fabricated by a simple dip-coating and heat treatment method. The PI nonwoven substrate provides high-temperature thermal stability for the gel separator and the crosslinked gel part yields enhanced affinity with the liquid electrolyte. Besides, the cross-linked polymer network could solve the issue of long-term durability of the composite separator in batteries. The gel separator shows better cyclability and rate capability than the traditional PP separator, implying a promising potential application in high-power, high-safety lithium ion batteries. The preparation process is compatible with the traditional manufacturing process of nonwoven membranes, and can be easily converted into continuous production on the industrial scale.