Issue 15, 2014

Novel Li3ClO based glasses with superionic properties for lithium batteries

Abstract

Three types of next generation batteries are currently being envisaged among the international community: metal-air batteries, multivalent cation batteries and all-solid-state batteries. These battery designs require high-performance, safe and cost effective electrolytes that are compatible with optimized electrode materials. Solid electrolytes have not yet been extensively employed in commercial batteries as they suffer from poor ionic conduction at acceptable temperatures and insufficient stability with respect to lithium-metal. Here we show a novel type of glasses, which evolve from an antiperovskite structure and that show the highest ionic conductivity ever reported for the Li-ion (25 mS cm−1 at 25 °C). These glassy electrolytes for lithium batteries are inexpensive, light, recyclable, non-flammable and non-toxic. Moreover, they present a wide electrochemical window (higher than 8 V) and thermal stability within the application range of temperatures.

Graphical abstract: Novel Li3ClO based glasses with superionic properties for lithium batteries

Article information

Article type
Paper
Submitted
08 Dec 2013
Accepted
26 Jan 2014
First published
07 Mar 2014

J. Mater. Chem. A, 2014,2, 5470-5480

Author version available

Novel Li3ClO based glasses with superionic properties for lithium batteries

M. H. Braga, J. A. Ferreira, V. Stockhausen, J. E. Oliveira and A. El-Azab, J. Mater. Chem. A, 2014, 2, 5470 DOI: 10.1039/C3TA15087A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements