Issue 12, 2014

In situ sulfur deposition route to obtain sulfur–carbon composite cathodes for lithium–sulfur batteries

Abstract

An in situ sulfur deposition route has been developed for synthesizing sulfur–carbon composites as cathode materials for lithium–sulfur batteries. This facile synthesis method involves the precipitation of elemental sulfur into the nanopores of conductive carbon black (CCB). The microstructure and morphology of the composites are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicate that most of the sulfur in the amorphous phase is chemically well-dispersed in the nanopores of the CCB. The sulfur content in the composites is confirmed using thermogravimetry analysis (TGA). The S–CCB composites with different sulfur content (52 wt%, 56 wt% and 62 wt%) deliver remarkably high initial capacities of up to 1534.6, 1357.4 and 1185.9 mA h g−1 at the current density of 160 mA g−1, respectively. Correspondingly, they maintain stable capacities of 1012.2, 957.9 and 798.6 mA h g−1 with the capacity retention of over 75.1% after 100 cycles, exhibiting excellent cycle stability. The electrochemical reaction mechanism for the lithium–sulfur batteries during the discharge process is investigated by electrochemical impedance spectroscopy (EIS). The significantly improved electrochemical performance of the S–CCB composite is attributed to the carbon-wrapped sulfur structure, which suppresses the loss of active material during charging–discharging and the restrained migration of the polysulfide ions to the anode. This facile in situ sulfur deposition method represents a low-cost approach to obtain high performance sulfur–carbon composite cathodes for rechargeable lithium–sulfur batteries.

Graphical abstract: In situ sulfur deposition route to obtain sulfur–carbon composite cathodes for lithium–sulfur batteries

Supplementary files

Article information

Article type
Paper
Submitted
01 Nov 2013
Accepted
19 Dec 2013
First published
20 Dec 2013

J. Mater. Chem. A, 2014,2, 4316-4323

Author version available

In situ sulfur deposition route to obtain sulfur–carbon composite cathodes for lithium–sulfur batteries

W. G. Wang, X. Wang, L. Y. Tian, Y. L. Wang and S. H. Ye, J. Mater. Chem. A, 2014, 2, 4316 DOI: 10.1039/C3TA14459C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements