Issue 28, 2014

Equilibrium phases of one-patch colloids with short-range attractions

Abstract

Inspired by experimental studies of short-ranged attractive patchy particles, we study with computer simulations the phase behavior and the crystalline structures of one-patch colloids with an interaction range equal to 5% of the particle diameter. In particular, we study the effects of the patch surface coverage fraction, defined as the ratio between the attractive and the total surface of a particle. Using free-energy calculations and thermodynamic integration schemes, we evaluate the equilibrium phase diagrams for particles with patch coverage fractions of 30%, 50% and 60%. For a 60% surface coverage fraction, we observe stable lamellar crystals consisting of stacked bilayers that directly coexist with a low density fluid. Inside the coexistence region, we observe the formation of lamellar structures also in direct NVT simulations, indicating that the barrier of formation is low and experimental realization is feasible. For sufficiently strong interactions, these structures spontaneously assemble from the fluid in simulations, suggesting that they might also easily form in experimental systems. In the Janus case, i.e. at 50% surface coverage fraction, no lamellar structures are formed, and the stable crystals are similar to those that have been found previously for a longer interaction range (i.e. 20% of the particle diameter). At 30% coverage fraction, we identify novel ‘open’ crystal structures with large unit cells of up to 14 particles that are stable in the strong interaction limit.

Graphical abstract: Equilibrium phases of one-patch colloids with short-range attractions

Article information

Article type
Paper
Submitted
05 Mar 2014
Accepted
29 Apr 2014
First published
09 Jun 2014

Soft Matter, 2014,10, 5121-5128

Author version available

Equilibrium phases of one-patch colloids with short-range attractions

Z. Preisler, T. Vissers, G. Munaò, F. Smallenburg and F. Sciortino, Soft Matter, 2014, 10, 5121 DOI: 10.1039/C4SM00505H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements