Issue 27, 2014

How a “pinch of salt” can tune chaotic mixing of colloidal suspensions

Abstract

Efficient mixing of colloids, particles or molecules is a central issue in many processes. It results from the complex interplay between flow deformations and molecular diffusion, which is generally assumed to control the homogenization processes. In this work we demonstrate on the contrary that despite fixed flow and self-diffusion conditions, the chaotic mixing of colloidal suspensions can be either boosted or inhibited by the sole addition of a trace amount of salt as a co-mixing species. Indeed, this shows that local saline gradients can trigger a chemically driven transport phenomenon, diffusiophoresis, which controls the rate and direction of molecular transport far more efficiently than the usual Brownian diffusion. A simple model combining the elementary ingredients of chaotic mixing with diffusiophoretic transport of the colloids allows rationalization of our observations and highlights how small-scale out-of-equilibrium transport bridges to mixing at much larger scales in a very effective way. Considering chaotic mixing as a prototypal building block for turbulent mixing suggests that these phenomena, occurring whenever the chemical environment is inhomogeneous, might bring interesting perspectives from micro-systems to large-scale situations, with examples ranging from ecosystems to industrial contexts.

Graphical abstract: How a “pinch of salt” can tune chaotic mixing of colloidal suspensions

Supplementary files

Article information

Article type
Communication
Submitted
27 Feb 2014
Accepted
18 Apr 2014
First published
02 May 2014

Soft Matter, 2014,10, 4795-4799

How a “pinch of salt” can tune chaotic mixing of colloidal suspensions

J. Deseigne, C. Cottin-Bizonne, A. D. Stroock, L. Bocquet and C. Ybert, Soft Matter, 2014, 10, 4795 DOI: 10.1039/C4SM00455H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements