Issue 27, 2014

Denser fluids of charge-stabilized colloids form denser sediments

Abstract

Granular matter, where solid-like elasticity emerges in the absence of crystalline order, has been actively studied over the last few decades, targeting fundamental physical understanding of granular packings and glasses, abundant in everyday life and technology. We employ charge-stabilized sub-micron particles in a solvent, known as colloids, to form granular packings through a well-controlled process, where initially homogeneous and thermodynamically equilibrated colloidal fluids form solid sediments, when subjected to an effective gravity in a centrifuge. We demonstrate that particles' volume fraction φj in these sediments increases linearly with that in the initial fluid φ0, setting an upper limit φRCP ≈ 0.64 on both φj and φ0, where φRCP coincides with the well-known, yet highly controversial, ‘random close packing’ density of spheres, providing new insight into the physics of granular packings. The observed φj(φ0) dependence is similar to the one recently reported for colloidal hard spheres, sterically stabilized by surface-linked polymer combs (S. R. Liber, et al., Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 5769–5773). However, the lower limit on sediment densities drops to φj ≈ 0.49 in the present work, suggesting that sedimented charge-stabilized silica are able to overcome mutual electrostatic repulsions, forming gel-like structures stabilized by occasional van der Waals contacts. Finally, by introducing particle size polydispersity, which significantly modifies fluid structure and sedimentation dynamics, we almost completely diminish the φj(φ0) dependence, bringing φj(0) close to its value in frictionless systems.

Graphical abstract: Denser fluids of charge-stabilized colloids form denser sediments

Supplementary files

Article information

Article type
Paper
Submitted
17 Jan 2014
Accepted
31 Mar 2014
First published
31 Mar 2014

Soft Matter, 2014,10, 4913-4921

Author version available

Denser fluids of charge-stabilized colloids form denser sediments

P. M. Nanikashvili, A. V. Butenko, S. R. Liber, D. Zitoun and E. Sloutskin, Soft Matter, 2014, 10, 4913 DOI: 10.1039/C4SM00128A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements