Jump to main content
Jump to site search

Issue 25, 2014
Previous Article Next Article

Equilibrium and non-equilibrium cluster phases in colloids with competing interactions

Author affiliations

Abstract

The phase behavior of colloids that interact via competing interactions – short-range attraction and long-range repulsion – is studied by computer simulation. In particular, for a fixed strength and range of repulsion, the effect of the strength of an attractive interaction (ε) on the phase behavior is investigated at various colloid densities (ρ). A thermodynamically stable equilibrium colloidal cluster phase, consisting of compact crystalline clusters, is found below the fluid–solid coexistence line in the ερ parameter space. The mean cluster size is found to linearly increase with the colloid density. At large ε and low densities, and at small ε and high densities, a non-equilibrium cluster phase, consisting of elongated Bernal spiral-like clusters, is observed. Although gelation can be induced either by increasing ε at constant density or vice versa, the gelation mechanism is different in either route. While in the ρ route gelation occurs via a glass transition of compact clusters, gelation in the ε route is characterized by percolation of elongated clusters. This study both provides the location of equilibrium and non-equilibrium cluster phases with respect to the fluid–solid coexistence, and reveals the dependencies of the gelation mechanism on the preparation route.

Graphical abstract: Equilibrium and non-equilibrium cluster phases in colloids with competing interactions

Back to tab navigation

Article information


Submitted
09 Dec 2013
Accepted
29 Mar 2014
First published
02 Apr 2014

This article is Open Access

Soft Matter, 2014,10, 4479-4486
Article type
Paper

Equilibrium and non-equilibrium cluster phases in colloids with competing interactions

E. Mani, W. Lechner, W. K. Kegel and P. G. Bolhuis, Soft Matter, 2014, 10, 4479
DOI: 10.1039/C3SM53058B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements