Issue 12, 2014

Designing unconventional Fmoc-peptide-based biomaterials: structure and related properties

Abstract

We have recently employed L-amino acids in the lipase-catalyzed biofabrication of a class of self-assembling Fmoc-peptides that form 3-dimensional nanofiber scaffolds. Here we report that using D-amino acids, the homochiral self-assembling peptide Fmoc-D-Phe3 (Fmoc-F*F*F*) also forms a 3-dimensional nanofiber scaffold that is substantially distinguishable from its L-peptide and heterochiral peptide (F*FF and FF*F*) counterparts on the basis of their physico-chemical properties. Such chiral peptides self-assemble into ordered nanofibers with well defined fibrillar motifs. Circular dichroism and atomic force microscopy have been employed to study in depth such fibrillar peptide structures. Dexamethasone release kinetics from PLGA and CS-PLGA nanoparticles entrapped within the peptidic hydrogel matrix encourage its use for applications in drug controlled release.

Graphical abstract: Designing unconventional Fmoc-peptide-based biomaterials: structure and related properties

Article information

Article type
Paper
Submitted
18 Sep 2013
Accepted
16 Dec 2013
First published
17 Dec 2013

Soft Matter, 2014,10, 1944-1952

Designing unconventional Fmoc-peptide-based biomaterials: structure and related properties

L. Chronopoulou, S. Sennato, F. Bordi, D. Giannella, A. Di Nitto, A. Barbetta, M. Dentini, A. R. Togna, G. I. Togna, S. Moschini and C. Palocci, Soft Matter, 2014, 10, 1944 DOI: 10.1039/C3SM52457D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements