Issue 17, 2014

Curling and rolling dynamics of naturally curved ribbons

Abstract

When a straight rod is bent and suddenly released on one end, a burst of dispersive flexural waves propagates down the material as predicted by linear beam theories. However, we show that for ribbons with a longitudinal natural radius of curvature a0, geometrical constraints lead to strain localization which controls the dynamics. This localized region of deformation selects a specific curling deformation front which travels down the ribbon when initially flattened and released. Performing experiments on different ribbons, in air and in water, we show that initially, on length scales on the order of a0, the curling front moves as a power law of time with an exponent ranging from 0.5 to 2 for increasing values of the ribbons' width. At longer time scales, the material wraps itself at a constant speed Vr into a roll of radius Ra0. The relationship between Vr and R is calculated by a balance between kinetic, elastic and gravitational energy and both internal and external powers dissipated. When gravity and drag are negligible, we observe that a0/R reaches a limiting value of 0.48 that we predict by solving the Elastica on the curled ribbon considering the centrifugal forces due to rotation. The solution we propose represents a solitary traveling curvature wave which is reminiscent to propagating instabilities in mechanics.

Graphical abstract: Curling and rolling dynamics of naturally curved ribbons

Supplementary files

Article information

Article type
Paper
Submitted
09 Aug 2013
Accepted
17 Jan 2014
First published
20 Jan 2014

Soft Matter, 2014,10, 3055-3065

Curling and rolling dynamics of naturally curved ribbons

O. A. Arriagada, G. Massiera and M. Abkarian, Soft Matter, 2014, 10, 3055 DOI: 10.1039/C3SM52142G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements