Issue 9, 2014

Simultaneous membrane transport of two active pharmaceutical ingredients by charge assisted hydrogen bond complex formation

Abstract

Using permeation through a model membrane in a Franz diffusion cell, we have demonstrated that acidic and basic active pharmaceutical ingredients (APIs) in deep eutectic ‘liquid co-crystal’ form can be held tightly together, even in solution, via strong hydrogen bonds or partially ionized interactions, providing simultaneous transport at rates much higher than solutions of their corresponding, commercially available crystalline salts, albeit at rates that are lower than the neutral forms of the individual molecules. It was also shown that the deep eutectic APIs do not have to be premade, but hydrogen-bonded complexes can be formed in situ by mixing the corresponding API–solvent solutions. To understand the behavior, we have extensively studied a range of nonstoichiometric mixtures of lidocaine and ibuprofen spectroscopically and via membrane transport. The data demonstrates the nature of the interactions between the acid and base and provides a route to tune the rate of membrane transport.

Graphical abstract: Simultaneous membrane transport of two active pharmaceutical ingredients by charge assisted hydrogen bond complex formation

Supplementary files

Article information

Article type
Edge Article
Submitted
08 Apr 2014
Accepted
09 Jun 2014
First published
10 Jun 2014

Chem. Sci., 2014,5, 3449-3456

Simultaneous membrane transport of two active pharmaceutical ingredients by charge assisted hydrogen bond complex formation

H. Wang, G. Gurau, J. Shamshina, O. A. Cojocaru, J. Janikowski, D. R. MacFarlane, J. H. Davis and R. D. Rogers, Chem. Sci., 2014, 5, 3449 DOI: 10.1039/C4SC01036A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements