Issue 110, 2014

Influence of solvents and assembly methods on the supramolecular patterns and luminescent properties of organic salts comprising 4,4′-dihydroxybiphenyl-3,3′-disulfonate and triphenylmethanaminium

Abstract

Twelve organic salts, namely 2(HTPMA)+·(H2M)2−·4(H2O) (1), 2(HTPMA)+·(H2M)2−·2(H2O) (2), 2(HTPMA)+·(H2M)2−·2(MeOH)·(H2O) (3), 2(HTPMA)+·(H2M)2−·4(MeOH) (4), 2(HTPMA)+·(H2M)2−·(MeOH) (5), 2(HTPMA)+·(H2M)2−·2(EtOH)·2(H2O) (6), 2(HTPMA)+·(H2M)2−·2(n-PrOH) (7), 2(HTPMA)+·(H2M)2−·2(n-BuOH) (8), 2(HTPMA)+·(H2M)2−·2(n-PeOH) (9), 2(HTPMA)+·(H2M)2−·2(DO) (10), 2(HTPMA)+·(H2M)2−·2(DMF) (11), and 2(HTPMA)+·(H2M)2−·2(DMSO) (12) (H4M = 4,4′-dihydroxybiphenyl-3,3′-disulfonic acid, TPMA = triphenylmethylamine, DO = 1,4-dioxane) have been obtained from the reaction of H4M and TPMA in different solvents by two assembly methods and characterized by elemental analysis, IR, TG, PL, powder and single-crystal X-ray diffraction. Structural analyses indicate that the nature of the solvent molecules can effectively influence the ⋯(–SO3)⋯(–NH3)⋯(solvent)⋯ patterns, which then result in diverse packing diagrams. In salts 1 and 3, pairs of HTPMA+ cations arrange in a tail-to-tail mode to form column motifs which extend the layers of H2M2− dianions into a pillared layered network. On the contrary, pairs of HTPMA+ cations in salt 2 arrange in head-to-head mode and form layer structures together with pairs of H2M2− dianions. The HTPMA+ cations and H2M2− dianions in salts 4 and 6 are alternately arranged to form a column motif, which then pack with each other to form a supramolecular network. Pairs of head-to-head HTPMA+ cations in salts 7–9 are sandwiched between the –SO3 groups through hydrogen bonding interactions, generating a graphite-like structure. The HTPMA+ cations in salts 5 and 10–12 arrange in tail-to-tail mode to form column motifs which are then sandwiched between biphenyl rings instead of the –SO3 groups. Moreover, different assembly processes are also responsible for the diverse structures. Small solvent molecules, such as H2O and MeOH, tend to form different structures (1 and 2, 3 and 4), while large molecules usually present the same structures (6–12). It is interesting to note that salt 4 can transform into salt 5 after being exposed to the air for several hours. Luminescence investigation reveals that the emission maximum of salts 1–12 varies from 365 to 371 nm.

Graphical abstract: Influence of solvents and assembly methods on the supramolecular patterns and luminescent properties of organic salts comprising 4,4′-dihydroxybiphenyl-3,3′-disulfonate and triphenylmethanaminium

Supplementary files

Article information

Article type
Paper
Submitted
14 Oct 2014
Accepted
19 Nov 2014
First published
19 Nov 2014

RSC Adv., 2014,4, 64802-64815

Influence of solvents and assembly methods on the supramolecular patterns and luminescent properties of organic salts comprising 4,4′-dihydroxybiphenyl-3,3′-disulfonate and triphenylmethanaminium

Y. Li, L. Huo, Y. Yu, F. Ge, Z. Deng, Z. Zhu and S. Gao, RSC Adv., 2014, 4, 64802 DOI: 10.1039/C4RA12338G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements