Issue 100, 2014

Topotactic synthesis and photocatalytic performance of one-dimensional ZnNb2O6 nanostructures and one-dimensional ZnNb2O6/KNbO3 hetero-nanostructures

Abstract

This paper introduces one-dimensional ZnNb2O6/KNbO3 hetero-nanostructures and one-dimensional ZnNb2O6 nanostructures. These nanostructures are synthesized via in situ topotactic structural transformation reaction using the tunnel structure K2Nb2O6 filiform crystal as precursor. Firstly, Zn2+ ions intercalate into K2Nb2O6 crystal by exchanging K+ ions from the K2Nb2O6 crystal with Zn2+ from Zn(NO3)2 or Zn(CH3COO)2 aqueous solution, to form two different Zn2+-exchanged samples, and then these Zn2+-exchanged samples topotacticly transform into one-dimensional ZnNb2O6/KNbO3 hetero-nanostructures and ZnNb2O6 nanostructures during heat-treatment. The formation reaction and structure of these samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and energy-dispersive spectroscopy (EDS). Photocatalytic experiments showed that one-dimensional ZnNb2O6/KNbO3 hetero-nanostructures and ZnNb2O6 nanostructures have excellent photocatalytic performance for the degradation of methylene blue (MB), rhodamine B (RhB), and methyl orange (MO).

Graphical abstract: Topotactic synthesis and photocatalytic performance of one-dimensional ZnNb2O6 nanostructures and one-dimensional ZnNb2O6/KNbO3 hetero-nanostructures

Article information

Article type
Paper
Submitted
18 Sep 2014
Accepted
21 Oct 2014
First published
27 Oct 2014

RSC Adv., 2014,4, 56637-56644

Author version available

Topotactic synthesis and photocatalytic performance of one-dimensional ZnNb2O6 nanostructures and one-dimensional ZnNb2O6/KNbO3 hetero-nanostructures

X. Kong, Z. Guo, P. Wen, L. Cao, J. Huang, C. Li, J. Fei, F. Wang and Q. Feng, RSC Adv., 2014, 4, 56637 DOI: 10.1039/C4RA10713F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements