A stochastic route to simulate the growth of porous anodic alumina†
Abstract
Porous anodic alumina (PAA) film is composed of highly ordered and controllable structures, and their extensive application requires the understanding of their growing mechanism. Herein, we present a localized oxidation model to unravel the phenomena of PAA growth, showing that random processes converge into an ordered formation due to the unique characteristics of ion transport confinement in alumina. The anodizing voltage shows a quadratic relationship with barrier layer depth. In addition, we predict the furcate conditions of PAA and the voltage threshold to produce a PAA by our model.