Issue 84, 2014

First analysis of the Herzberg (C1Σ+ → A1Π) band system in the less-abundant 13C17O isotopologue

Abstract

This work presents high-resolution emission spectra measurements of the Herzberg band system, which has not been observed and analysed in the 13C17O isotopologue so far. Bands C → A (0,1), (0,2) and (0,3) were recorded in a region at 22 950–26 050 cm−1 using high-accuracy dispersive optical spectroscopy. The 13C17O molecules were formed and excited in a stainless steel hollow-cathode lamp with two anodes. All 224 rovibrational spectra lines, up to Jmax = 30, were precisely measured with an accuracy of about 0.0030 cm−1 and rotationally analysed. In this work the following have been determined in 13C17O for the first time: the merged rotational constants of the C1Σ+(ν = 0) Rydberg state and the individual rotational constants of the A1Π(ν = 3) state, as well as the rotational and vibrational equilibrium constants for the C1Σ+ state, the band origins of the C → A system, the isotope shifts, and the ΔGC1/2 vibrational quantum. The combined analysis of the Herzberg bands obtained now and the Ångström (B1Σ+ → A1Π) system analysed earlier (R. Hakalla et al., J. Phys. Chem. A, 2013, 117, 12299 and R. Hakalla et al., J. Mol. Spectrosc., 2012, 272, 11) yielded a precisely relative characteristic of the C1Σ+(ν = 0) and B1Σ+(ν = 0 and 1) Rydberg states in the 13C17O molecule, among others νCB00, νCB01 vibrational quanta. Also, many molecular constant values of the C1Σ+ state in the 12C16O, 12C17O, 13C16O, 12C18O, and 13C18O isotopologues were determined, which have not been published so far, as well as the RKR turning points, Franck–Condon factors, relative intensities, r-centroids for the Herzberg band system and the main, isotopically invariant parameters of the C1Σ+ state in the CO molecule within the Born–Oppenheimer approximation. In the A1Π(ν = 3) state of the 13C17O molecule, extensive, multi-state rotational perturbations were found, which were analysed and substantiated in detail. The vibrational level ν = 0 of the C1Σ+ state was analysed, paying special attention to possible irregularities, and no noticeable perturbations were found in it up to the observed Jmax.

Graphical abstract: First analysis of the Herzberg (C1Σ+ → A1Π) band system in the less-abundant 13C17O isotopologue

Article information

Article type
Paper
Submitted
24 Jun 2014
Accepted
19 Aug 2014
First published
19 Aug 2014

RSC Adv., 2014,4, 44394-44407

Author version available

First analysis of the Herzberg (C1Σ+ → A1Π) band system in the less-abundant 13C17O isotopologue

R. Hakalla, RSC Adv., 2014, 4, 44394 DOI: 10.1039/C4RA08222B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements