Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 79, 2014
Previous Article Next Article

Enhancing the lithiation rate of silicon nanowires by the inclusion of tin

Author affiliations

Abstract

Silicon (Si) has a very high lithium storage capacity and is being explored as a negative electrode material in lithium-ion batteries (LIBs). Si nanowires can exhibit relatively stable performance for many cycles of charging; however, conductive carbon must often be added to the electrode layer to improve the rate capability due to the relatively low electrical conductivity of Si. The added carbon lowers the capacity of the electrode. Here, we show that the rate capability of Si in LIBs can be substantially enhanced by incorporating tin (Sn) into Si nanowires. The solubility of Sn in Si is very low (0.015 at%); yet, Sn used as a seed for supercritical fluid–liquid–solid (SFLS) growth can be trapped in Si nanowires with relatively high concentration (10 at%). Such Sn-containing Si nanowires and no added conductive carbon in the electrode layer, could be cycled in LIBs with high capacity (∼1000 mA h g−1 over 100 cycles) at a current density of 2.8 A g−1 (1 C). Capacities exceeding that of graphite could still be reached at cycle rates as high as 2 C. Real-time in situ transmission electron microscopy (TEM) revealed that lithiation occurs five times faster in Si nanowires with significant amounts of Sn than in the Si nanowires without Sn, and twice as fast as in nanowires that were coated with carbon.

Graphical abstract: Enhancing the lithiation rate of silicon nanowires by the inclusion of tin

Back to tab navigation

Supplementary files

Article information


Submitted
22 Jul 2014
Accepted
27 Aug 2014
First published
28 Aug 2014

RSC Adv., 2014,4, 42022-42028
Article type
Paper

Enhancing the lithiation rate of silicon nanowires by the inclusion of tin

T. D. Bogart, X. Lu, M. Gu, C. Wang and B. A. Korgel, RSC Adv., 2014, 4, 42022
DOI: 10.1039/C4RA07418A

Social activity

Search articles by author

Spotlight

Advertisements