Issue 71, 2014

Anticancer (in vitro) and antimicrobial effect of gold nanoparticles synthesized using Abelmoschus esculentus (L.) pulp extract via a green route

Abstract

Green synthesis of gold nanoparticles (Au NPs) using Abelmoschus esculentus (L.) pulp extract has been elaborately studied and reported here. The Au NPs have been characterized using several techniques. Optical analysis indicates adequate stability of the synthesized Au NPs, while FTIR analyses the fact that phytochemicals present in the Abelmoschus esculentus (L.) pulp extract play the key role in stabilizing the Au NPs. Morphological study shows that the nanoparticles are mostly spherical in shape with an average particle size of ∼14 nm, and these results are comparable with the particle size obtained from XRD. The selected area electron diffraction pattern indicates the crystalline nature of the Au NPs, which is further confirmed from XRD studies. The present study also demonstrates the in vitro efficacy of Au NPs against Jurkat cells. Results show that the IC50 dose of Au NPs is capable of significantly elevating intracellular reactive oxygen species and diminishing mitochondrial membrane potential, indicating the effective involvement of apoptosis in cell death. Furthermore, the synthesized Au NPs show a sufficient degree of antimicrobial activity against different types of bacteria. These results clearly show that the Abelmoschus esculentus (L.) pulp synthesized Au NPs have excellent medicinal applications.

Graphical abstract: Anticancer (in vitro) and antimicrobial effect of gold nanoparticles synthesized using Abelmoschus esculentus (L.) pulp extract via a green route

Article information

Article type
Paper
Submitted
18 Jul 2014
Accepted
29 Jul 2014
First published
29 Jul 2014

RSC Adv., 2014,4, 37838-37848

Anticancer (in vitro) and antimicrobial effect of gold nanoparticles synthesized using Abelmoschus esculentus (L.) pulp extract via a green route

Md. M. Rahaman Mollick, B. Bhowmick, D. Mondal, D. Maity, D. Rana, S. K. Dash, S. Chattopadhyay, S. Roy, J. Sarkar, K. Acharya, M. Chakraborty and D. Chattopadhyay, RSC Adv., 2014, 4, 37838 DOI: 10.1039/C4RA07285E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements