A novel approach to prepare Si/C nanocomposites with yolk–shell structures for lithium ion batteries
Abstract
A novel method was developed to successfully prepare mesoporous Si/C nanocomposites with yolk–shell structures (MSi@C). Different from the reported methods, this approach was unique, straightforward and easily scaled up. A plausible mechanism for the formation of MSi@C nanocomposites was proposed, which was in accordance with the results of transmission electron microscopy (TEM). When the mixture of mesoporous Si (M-Si) and citric acid was heated up, the volume of air adsorbed by the M-Si expanded, and the viscoelastic citric acid layers inflated just like balloons, directly leading to the formation of the yolk–shell structured MSi@C nanocomposites during the carbonization. The MSi@C nanocomposites possessed an M-Si core with diameter ∼150 nm and a carbon shell with diameter ∼230 nm. Such nano and mesoporous structure combined with voids between the M-Si core and carbon shell not only provides enough space for the volume expansion of M-Si during lithiation, but also accommodates the mechanical stresses/strains caused by the volume inflation and contraction. Moreover, partial graphitization of the carbon contributed to the improved electrical conductivity and rate performance of MSi@C. As a result, the prepared MSi@C exhibited an initial reversible capacity of 2599.1 mA h g−1 and maintained 1264.7 mA h g−1 even after 150 cycles at 100 mA g−1, with high coulombic efficiency (CE) above 99% (based on the weight of M-Si in the electrode). Therefore, this work provided an alternative method to fabricate yolk–shell nanostructured materials with great potential as anode materials for lithium ion batteries.
Please wait while we load your content...