Issue 102, 2014

Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach

Abstract

Certain nano-materials are known to have plant growth promoting effects, which could find applications in agriculture. We drew inspiration from the nano-factories of deep-sea hydrothermal vents; where iron pyrite nanoparticles serve as fertilizer to sustain chemoautotrophic life forms. We synthesized such iron pyrite nanoparticles in a controlled environment and used them as seed treatment agent (Pro-fertilizer). For us, the term ‘pro-fertilizers’ represents those materials that cause enhanced plant growth with minimum interference to the soil ecosystem when used for seed treatment. We conducted multi-location field trials on spinach crops, since it is a globally popular crop, consumed as both fresh (salads) and processed food. The spinach seeds were treated for 14 hours in an aqueous suspension of iron pyrite nanoparticle (FeS2 + H2O) and thereafter directly sown in the field setup for the experiment. The control seeds were only treated in water for the same duration and sown directly in the field. After 50 days, the crop yields from iron-pyrite nanoparticle treated seeds and control seeds were evaluated. The plants developed from iron pyrite nanoparticle treated seeds exhibited significantly broader leaf morphology, larger leaf numbers, increased biomass; along with higher concentration of calcium, manganese and zinc in the leaves when compared to the plants developed from control seeds. We further investigated the possible mechanism resulting in the biomass enhancement following seed-treatment. Our results indicate that there is an enhanced breakdown of stored starch in the iron pyrite treated seeds resulting in significantly better growth. This raises the possibility of developing iron pyrite nanoparticles as a commercial seed-treatment agent (pro-fertilizer) for spinach crops.

Graphical abstract: Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach

Supplementary files

Article information

Article type
Paper
Submitted
14 Jul 2014
Accepted
29 Oct 2014
First published
29 Oct 2014

RSC Adv., 2014,4, 58495-58504

Author version available

Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach

G. Srivastava, C. K. Das, A. Das, S. K. Singh, M. Roy, H. Kim, N. Sethy, A. Kumar, R. K. Sharma, S. K. Singh, D. Philip and M. Das, RSC Adv., 2014, 4, 58495 DOI: 10.1039/C4RA06861K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements