Issue 84, 2014

Steric and electronic control over the structural diversity of N-(n-pyridinyl) diphenylphosphinic amides (n = 2 and 4) as difunctional ligands in triphenyltin(iv) adducts

Abstract

Two triphenyltin(IV) adducts of difunctional ligands, N-(n-pyridinyl) diphenylphosphinic amide (n = 2 and 4), have been synthesized and characterized by 1H, 31P, 119Sn NMR and IR spectroscopy. The spectroscopic properties of the complexes were compared with those of corresponding ligands. The crystal structures of the complexes were determined by X-ray crystallography, which reveals a trigonal bipyramidal geometry surrounding the tin(IV). Both of the ligands function in an ambidentate mode, ligating through either the O or N atom. The experimental and theoretical (DFT) studies show that the Sn(IV) interacts more strongly with the N-pyridine atom than the P[double bond, length as m-dash]O functional group. Furthermore, DFT calculations, at the B3LYP level, have been carried out to determine the deeper reasons for the adopted bonding mode in the complexes. The influence of the ligand structure on the coordination behaviour and the contribution of hydrogen bonding to the stability of the resulting complexes were elucidated. The results indicate that the intermolecular hydrogen bonds have an important role in the molecular structures and supramolecular associations of the organotin(IV) compounds.

Graphical abstract: Steric and electronic control over the structural diversity of N-(n-pyridinyl) diphenylphosphinic amides (n = 2 and 4) as difunctional ligands in triphenyltin(iv) adducts

Supplementary files

Article information

Article type
Paper
Submitted
25 Jun 2014
Accepted
09 Sep 2014
First published
19 Sep 2014

RSC Adv., 2014,4, 44509-44516

Steric and electronic control over the structural diversity of N-(n-pyridinyl) diphenylphosphinic amides (n = 2 and 4) as difunctional ligands in triphenyltin(IV) adducts

K. Gholivand, A. Gholami, S. K. Tizhoush, K. J. Schenk, F. Fadaei and A. Bahrami, RSC Adv., 2014, 4, 44509 DOI: 10.1039/C4RA06212D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements