Issue 68, 2014

Adsorption processes for CO2 capture from flue gas using polyaniline solid sorbent

Abstract

In this simulation study, the temperature swing adsorption (TSA) process and the pressure swing adsorption (PSA) process were utilized to separate flue gas (15.03% CO2 and 84.97% N2) from a power plant with a solid polyaniline sorbent. CO2 can be recovered and sequestrated to reduce greenhouse-gas effects. The method of lines is utilized, combined with upwind differences, cubic spline approximation and LSODE of ODEPACK software to solve the problem. The concentration, temperature, and adsorption quantity in the bed are integrated with respect to time by LSODE of ODEPACK software. The simulation is stopped when the system reaches a cyclic steady state. In this study, experimental data was first regressed to obtain the parameters of the isotherm curves; then the breakthrough curve of the solid polyaniline sorbent was simulated. The feasibility of the adsorption process simulation program became obvious through a comparison of the experimental and simulation results. Four different processes were used in this study: the single-bed five-step TSA process, the single-bed two-step PSA process, the single-bed three-step PSA process and the dual-bed six-step PSA process. The optimal operating conditions were obtained by varying the operating variables, such as adsorption temperature, desorption temperature, feed pressure, bed length, step time, etc. After the variables discussion, the best process is found to be the single-bed three-step PSA process and the best operating conditions are a feed pressure of 6.0 atm, a co-current depressurization pressure of 1.0 atm, a vacuum pressure of 0.1 atm, a bed length of 98.3 cm and step times of 1200, 10 and 500 s. The results of the aforementioned operating conditions are 97.13% purity and 87.26% recovery of CO2.

Graphical abstract: Adsorption processes for CO2 capture from flue gas using polyaniline solid sorbent

Article information

Article type
Paper
Submitted
09 May 2014
Accepted
01 Aug 2014
First published
01 Aug 2014

RSC Adv., 2014,4, 36307-36315

Adsorption processes for CO2 capture from flue gas using polyaniline solid sorbent

C. Chou, C. Huang, N. Cheng, Y. Shen, H. Yang and M. Yang, RSC Adv., 2014, 4, 36307 DOI: 10.1039/C4RA04333B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements