Issue 90, 2014

A pharmaceutical cocrystal with potential anticancer activity

Abstract

The design of pharmaceutical cocrystals has become a prime thrust of crystal engineering and the pharmaceutical industry in recent times – but the use of pharmaceutical cocrystals as regular drugs is yet to be explored. Quinoxaline acts as a basic skeleton of several potential anticancer drugs. We have successfully cocrystallized quinoxaline with another organic molecule 3-thiosemicarbano-butan-2-one-oxime (TSBO, a virus replication inhibitor) and examined the anticancer activity of the cocrystal. The crystal structure of the cocrystal was determined by single crystal X-diffraction study. According to thermogravimetric study the cocrystal exhibits better thermal stability than quinoxaline. UV-Vis spectroscopic study has shown that in solution state the behavior of the cocrystal and the physical mixture of its components (mixture of quinoxaline and TSBO) are significantly different. The solubility of the cocrystal in distilled water has been found to be 31.9 mg mL−1. The cocrystal exhibits a specific cytotoxic effect on lung cancer cells (A549) at 10−7 M concentration while it shows growth inhibitory effect on normal cells. The detailed mechanistic study of the cytotoxicity of the cocrystal suggests that it follows the mitochondrial mediated cell death pathway through activation of Caspase 9 and Bax. It also shows anticancer activity on breast cancer cells (MCF-7).

Graphical abstract: A pharmaceutical cocrystal with potential anticancer activity

Supplementary files

Article information

Article type
Paper
Submitted
09 Apr 2014
Accepted
16 Sep 2014
First published
18 Sep 2014

RSC Adv., 2014,4, 49070-49078

A pharmaceutical cocrystal with potential anticancer activity

R. Saha, S. Sengupta, S. K. Dey, I. M. Steele, A. Bhattacharyya, S. Biswas and S. Kumar, RSC Adv., 2014, 4, 49070 DOI: 10.1039/C4RA03207A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements