Issue 50, 2014

Evaluating solvent extraction systems using metabolomics approaches

Abstract

Metabolic fingerprinting was performed on a set of botanical extracts to compare the extraction efficiency of different solvents to inform the construction of phytochemical libraries. We compared the extraction efficiency, examining both yield and chemical diversity, of eight single-solvent extractions prepared in parallel and using solvent–solvent partitioning. Three-dimensional data were reduced into features, which were used as unbiased metrics to identify solvents that would produce botanical extracts with the greatest chemical diversity. Chemical diversity and extract yield did not necessarily increase together. For each species and tissue, the total number of observable chemical features closely approached maximum values when three different single-solvent extractions were performed in parallel. The dynamic range of detectable compounds in plant extracts was increased significantly by performing solvent partitioning. Overall, maximum chemical diversity in a plant extract was most efficiently approached if solvent partitioning was performed on an extract made with 70% ethanol. We have shown that using metabolic fingerprinting is useful for assessing compound diversity in complex plant extracts.

Graphical abstract: Evaluating solvent extraction systems using metabolomics approaches

Supplementary files

Article information

Article type
Paper
Submitted
28 Mar 2014
Accepted
02 Jun 2014
First published
02 Jun 2014

RSC Adv., 2014,4, 26325-26334

Author version available

Evaluating solvent extraction systems using metabolomics approaches

A. C. Martin, A. D. Pawlus, E. M. Jewett, D. L. Wyse, C. K. Angerhofer and A. D. Hegeman, RSC Adv., 2014, 4, 26325 DOI: 10.1039/C4RA02731K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements