Issue 8, 2014

Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection

Abstract

A novel synthetic methodology for star shaped gold-coated magnetic nanoparticles is reported. The coating is performed in two steps: formation of gold nuclei at the surface of magnetite nanoparticles followed by growth of the gold nuclei into a complete star shaped shell. The star-shaped gold-coated magnetic nanoparticles thus obtained preserve the magnetic properties of the precursor magnetite nanoparticles, e.g. they can be easily separated with a magnet. In addition, the gold coating provides interesting optical properties while simultaneously allowing for biofunctionalization that may be advantageous for biological applications, such as (bio)detection via surface-enhanced Raman spectroscopy (SERS). As a proof-of-concept, a capping agent terminated with a nickel(II)-nitrilotriacetate group showing high affinity for histidine was used to modify the surface of the nanoparticles. The resulting star-shaped nanoparticles were used to selectively capture histidine-tagged maltose-binding protein from a crude cell extract. Finally, the performance of star shaped gold-coated magnetic nanoparticles as SERS platforms was demonstrated through the detection of Raman active dye (Astra Blue).

Graphical abstract: Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection

Supplementary files

Article information

Article type
Paper
Submitted
16 Nov 2013
Accepted
25 Nov 2013
First published
26 Nov 2013

RSC Adv., 2014,4, 3659-3667

Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection

P. Quaresma, I. Osório, G. Dória, P. A. Carvalho, A. Pereira, J. Langer, J. P. Araújo, I. Pastoriza-Santos, L. M. Liz-Marzán, R. Franco, P. V. Baptista and E. Pereira, RSC Adv., 2014, 4, 3659 DOI: 10.1039/C3RA46762G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements