Issue 14, 2014

All-atom molecular dynamics simulation of HPMA polymers

Abstract

Structural properties such as size, shape and density distribution of a range of N-(2-hydroxypropyl)methacrylamide (HPMA) polymers in various solvent models have been investigated. Common atomistic force fields were compared against rotational barriers and relative conformational energies obtained from ab initio and density functional theory (DFT) data for a monomer and dimer of HPMA. This identified the AMBER99 parameter set as the most appropriate for representing the structures and so AMBER99 was employed for all molecular dynamics simulations. MD trajectories were calculated for a range of polymer sizes from 4 to 265 repeat units (2 to 35 kDa). The time averaged radius of gyration was extracted from trajectories and interpreted in the context of Flory's mean field approach. Comparison with data obtained from small angle neutron scattering (SANS) experiments was then used to differentiate between alternative solvent models. The shape adopted by such polymers was evaluated by fitting structures to ellipsoids, to allow separate analysis of radius and density profile along each axis. The density distribution of atoms was defined using these ellipsoids according to centre of mass or centre of neutron scattering lengths, the latter allowing direct comparison with experimental SANS data. We show that computational simulation of such polymers has practical application in obtaining detailed morphological information of polymer solution structure, and as a benchmark for coarse-grained methods.

Graphical abstract: All-atom molecular dynamics simulation of HPMA polymers

Supplementary files

Article information

Article type
Paper
Submitted
04 Nov 2013
Accepted
19 Dec 2013
First published
19 Dec 2013

RSC Adv., 2014,4, 7003-7012

All-atom molecular dynamics simulation of HPMA polymers

G. Meleshko, J. Kulhavy, A. Paul, D. J. Willock and J. A. Platts, RSC Adv., 2014, 4, 7003 DOI: 10.1039/C3RA46386A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements