Issue 6, 2014

Modeling, simulation and design of dye sensitized solar cells

Abstract

It is well known that recombination and transport rule the performance of dye sensitized solar cells (DSC's); although, the influence that these two phenomena have in their performance, particularly on the open circuit-potential (Voc) and on the short circuit current (Jsc), is not fully understood. In this paper a phenomenological model is used to describe the quantitative effect that transport and recombination have on the performance of the solar cell and their influence on its optimal design. The model is used to predict the influence of the recombination reaction rate constant (kr) and diffusion coefficient (Deff) on the Voc and on the Jsc, whether a linear or non-linear recombination kinetic is considered. A methodology is provided for decoupling the conduction band shifts from recombination effects in charge extraction experiments. Results also suggest that the influence of recombination on the Voc and on Jsc is highly dependent on the reaction order considered. This fact highlights the importance of considering the reaction order when modeling data obtained by experimental methods. The combined results are analyzed and discussed in terms of the collection efficiency and the optimization of the photoelectrode thickness. The model provides also a useful framework for exploring new concepts and designs for improving DSCs performance.

Graphical abstract: Modeling, simulation and design of dye sensitized solar cells

Article information

Article type
Paper
Submitted
31 Oct 2013
Accepted
21 Nov 2013
First published
22 Nov 2013

RSC Adv., 2014,4, 2830-2844

Modeling, simulation and design of dye sensitized solar cells

J. Maçaira, L. Andrade and A. Mendes, RSC Adv., 2014, 4, 2830 DOI: 10.1039/C3RA46295A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements