Issue 6, 2014

Unveiling the dual role of the cholinium hexanoate ionic liquid as solvent and catalyst in suberin depolymerisation

Abstract

Disruption of the three-dimensional network of suberin in cork by cholinium hexanoate leads to its efficient and selective isolation. The reaction mechanism, which likely involves selective cleavage of some inter-monomeric bonds in suberin, was still unanswered. To address this question, the role of the ionic liquid during suberin depolymerisation and during cleavage of standard compounds carrying key chemical functionalities was herein investigated. A clear demonstration that the ionic liquid catalyses the hydrolysis of acylglycerol ester bonds was attained herein, both experimentally and computationally (DFT calculations). This behaviour is related to cholinium hexanoate capacity to activate the nucleophilic attack of water. The data showed also that the most favourable reaction is the hydrolysis of acylglycerol ester bonds, with the C2 position reporting the faster kinetics, whilst most of the linear aliphatic esters remained intact. The study emphasises that the ionic liquid plays the dual role of solvent and catalyst and leads to suberin efficient extraction through a mild depolymerisation. It is also one of the few reports of ionic liquids as efficient catalysts in the hydrolysis of esters.

Graphical abstract: Unveiling the dual role of the cholinium hexanoate ionic liquid as solvent and catalyst in suberin depolymerisation

Supplementary files

Article information

Article type
Paper
Submitted
17 Oct 2013
Accepted
18 Nov 2013
First published
21 Nov 2013

RSC Adv., 2014,4, 2993-3002

Unveiling the dual role of the cholinium hexanoate ionic liquid as solvent and catalyst in suberin depolymerisation

R. Ferreira, H. Garcia, A. F. Sousa, M. Guerreiro, F. J. S. Duarte, C. S. R. Freire, M. J. Calhorda, A. J. D. Silvestre, W. Kunz, L. P. N. Rebelo and C. Silva Pereira, RSC Adv., 2014, 4, 2993 DOI: 10.1039/C3RA45910A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements