Issue 1, 2014

Fluorescent anion sensing by bisquinolinium pyridine-2,6-dicarboxamide receptors in water

Abstract

Dicationic N-methylated at quinolyl moieties derivatives of three isomers of N,N′-bis(quinolyl)pyridine-2,6-dicarboxamide, and respective N-methyl quinolinium benzamides as reference compounds, have been prepared and characterized by crystal structures, spectral and acid–base properties in water. First pKa values of dicarboxamides between 8.1 and 9.3 determined spectrophotometrically are unusually low for amides. Dicarboxamide derivatives of 3- (1) and 6-aminoquinoline (2) undergo efficient fluorescence quenching by halide, acetate, pyrophosphate and nucleotide anions but the derivative of 5-aminoquinoline (3) shows very small quenching effects. The shape of Stern–Volmer plots for dicarboxamides indicates the existence of ground state complexation with anions, which is absent for related benzamides. Association constants, KA, with anions were calculated from analysis of concentration profiles of the quenching effects on the fluorescence of 1 and 2. Quenching by nucleoside triphosphates is much more efficient than by inorganic anions. Efficient binding of even simple inorganic anions by neutral amide N–H donors in water is attributed to high acidity of amides and preorganized rigid structure of the receptors.

Graphical abstract: Fluorescent anion sensing by bisquinolinium pyridine-2,6-dicarboxamide receptors in water

Supplementary files

Article information

Article type
Paper
Submitted
14 Aug 2013
Accepted
04 Oct 2013
First published
04 Oct 2013

RSC Adv., 2014,4, 455-466

Fluorescent anion sensing by bisquinolinium pyridine-2,6-dicarboxamide receptors in water

A. Dorazco-González, M. F. Alamo, C. Godoy-Alcántar, H. Höpfl and A. K. Yatsimirsky, RSC Adv., 2014, 4, 455 DOI: 10.1039/C3RA44363A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements