Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 10, 2014
Previous Article Next Article

All-conjugated cationic copolythiophene “rod–rod” block copolyelectrolytes: synthesis, optical properties and solvent-dependent assembly

Author affiliations

Abstract

Amphiphilic diblock copolythiophenes were synthesised by an efficient two-step strategy. The diblock copolyelectrolytes were obtained via quasi-living Kumada catalyst-transfer polycondensation followed by quaternisation of the bromohexyl side chains of one of the monomer constituents into N-methylimidazolium, pyridinium, trimethylammonium or trimethylphosphonium units. The effect of the nature of the charged group on the thermal properties was investigated by Rapid Heat–Cool (RHC) calorimetry measurements. The solvent-driven assembly of these block copolyelectrolytes in chloroform (CHCl3), water, methanol (MeOH), water–MeOH mixtures and in subsequently prepared thin films was investigated using a combination of photoluminescence, scattering and microscopic techniques. The rigid rod-structure of the block copolyelectrolytes led to the formation of core–shell cylindrical or disc-like aggregates in solution, with features determined by the nature of the solvent. AFM studies revealed that the aggregates formed in solution can be transferred into thin films allowing for the reliable control of the self-organisation process and the resulting nanoscale architecture.

Graphical abstract: All-conjugated cationic copolythiophene “rod–rod” block copolyelectrolytes: synthesis, optical properties and solvent-dependent assembly

Back to tab navigation

Supplementary files

Article information


Submitted
10 Jan 2014
Accepted
23 Jan 2014
First published
24 Jan 2014

Polym. Chem., 2014,5, 3352-3362
Article type
Paper
Author version available

All-conjugated cationic copolythiophene “rod–rod” block copolyelectrolytes: synthesis, optical properties and solvent-dependent assembly

A. Thomas, J. E. Houston, N. Van den Brande, J. De Winter, M. Chevrier, R. K. Heenan, A. E. Terry, S. Richeter, A. Mehdi, B. Van Mele, P. Dubois, R. Lazzaroni, P. Gerbaux, R. C. Evans and S. Clément, Polym. Chem., 2014, 5, 3352
DOI: 10.1039/C4PY00037D

Social activity

Search articles by author

Spotlight

Advertisements