Issue 2, 2014

Photoresponsive polyesters by incorporation of alkoxyphenacyl or coumarin chromophores along the backbone

Abstract

The synthesis and photochemical characterization of two classes of photoresponsive polyesters are described. These polyesters contain either alkoxyphenacyl or coumarin chromophores embedded along the polymer chain. The alkoxyphenacyl polyesters undergo efficient photoinduced chain scission upon irradiation at 300 nm in solution or as a nanoparticle suspension. At 254 nm the coumarin polyesters undergo polymer chain scission. Irradiation of the coumarin polyesters in solution at 350 nm results in both chain crosslinking and chain scission behavior, while irradiation of the coumarin polyesters as nanoparticles results in chain crosslinking. The properties of the alkoxyphenacyl and coumarin polyesters are influenced by the choice of diacid as seen from their thermal behavior. The use of glutamic acid enabled surface or bulk functionalization of the photoresponsive polymers. In addition, controlled release of Nile Red from coumarin polyester nanoparticles is demonstrated by modulation of the wavelength and intensity of irradiation.

Graphical abstract: Photoresponsive polyesters by incorporation of alkoxyphenacyl or coumarin chromophores along the backbone

Article information

Article type
Paper
Submitted
06 Sep 2013
Accepted
04 Dec 2013
First published
05 Dec 2013

Photochem. Photobiol. Sci., 2014,13, 412-421

Photoresponsive polyesters by incorporation of alkoxyphenacyl or coumarin chromophores along the backbone

E. A. Chamsaz, S. Sun, M. V. S. N. Maddipatla and A. Joy, Photochem. Photobiol. Sci., 2014, 13, 412 DOI: 10.1039/C3PP50311A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements