Issue 9, 2014

Fluorescence enhancement of a fluorescein derivative upon adsorption on cellulose

Abstract

9-[1-(2-Methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (2-Me-4-OMe TG) is a fluorescein derivative dye whose photophysical properties show a remarkable pH dependence. In aqueous solution the fluorescence quantum yield (Φf) of its anionic species is nearly a hundred times higher than that of its neutral species. Such a large difference in Φf makes 2-Me-4-OMe TG useful as an “on–off” pH indicator. Here we report that adsorption on the surface of microcrystalline cellulose exerts a profound effect upon the photophysical properties of 2-Me-4-OMe TG. On the solid only the dye neutral species is observed and its Φf is 0.31 ± 0.10, which is approximately thirty times higher than the value found for the neutral species in aqueous solution (Φf = 0.01). 2-Me-4-OMe TG and Dabcyl (DB) were co-adsorbed on the surface of microcrystalline cellulose to study the transfer of excitation energy from the former to the latter. In the absence of the dye, the formation of DB aggregates is observed at concentrations greater than 0.34 μmol per gram of cellulose, while in the presence of 2-Me-4-OMe TG the formation of DB aggregates is thoroughly inhibited. The quenching of fluorescence of 2-Me-4-OMe TG by DB reaches efficiencies as high as 90% for the most concentrated samples.

Graphical abstract: Fluorescence enhancement of a fluorescein derivative upon adsorption on cellulose

Supplementary files

Article information

Article type
Paper
Submitted
28 Apr 2014
Accepted
26 Jun 2014
First published
26 Jun 2014

Photochem. Photobiol. Sci., 2014,13, 1311-1320

Author version available

Fluorescence enhancement of a fluorescein derivative upon adsorption on cellulose

S. G. Lopez, L. Crovetto, J. M. Alvarez-Pez, E. M. Talavera and E. San Román, Photochem. Photobiol. Sci., 2014, 13, 1311 DOI: 10.1039/C4PP00150H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements