Issue 1, 2014

A triplet–triplet annihilation based up-conversion process investigated in homogeneous solutions and oil-in-water microemulsions of a surfactant

Abstract

The triplet–triplet annihilation based up-conversion process, involving a platinum octaethyl-porphyrin (PtOEP) as a sensitizer and tetraphenyl-pyrene (TPPy) as an emitter, has been investigated in homogeneous solutions of toluene, bromobenzene and anisole, and oil-in-water microemulsions of the TX-100 surfactant, where toluene constitutes the non-polar phase. In homogeneous solutions, the highest up-conversion quantum yield (of the order of 20%) has been achieved in toluene, being the solvent that has the lowest viscosity among those explored. The up-conversion emission from the PtOEP–TPPy pair has been then investigated in a toluene based oil-in-water microemulsion at three different concentrations of the solutes, showing quantum yields up to the order of 1%, under the same irradiation conditions, but different deoxygenating procedures. The results herein reported might represent a good starting point for a future investigation in microheterogeneous systems. An optimization of the microemulsion composition, in terms of surfactant, co-surfactant and toluene concentrations, could allow us to increase the sensitizer and emitter concentrations and set up the best operative conditions to obtain even higher up-conversion efficiencies.

Graphical abstract: A triplet–triplet annihilation based up-conversion process investigated in homogeneous solutions and oil-in-water microemulsions of a surfactant

Article information

Article type
Paper
Submitted
10 Sep 2013
Accepted
14 Oct 2013
First published
15 Oct 2013

Photochem. Photobiol. Sci., 2014,13, 48-61

A triplet–triplet annihilation based up-conversion process investigated in homogeneous solutions and oil-in-water microemulsions of a surfactant

M. Penconi, P. L. Gentili, G. Massaro, F. Elisei and F. Ortica, Photochem. Photobiol. Sci., 2014, 13, 48 DOI: 10.1039/C3PP50318F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements