Issue 3, 2014

Substituent effects on the turn-on kinetics of rhodamine-based fluorescent pH probes

Abstract

Fluorescent turn-on probes based on a rhodamine spirolactam (RSL) structure have recently become a popular means of detecting pH, metal ions, and other analytes of interest. RSLs are colorless and non-fluorescent until the target analyte induces opening of the spirocyclic ring system, revealing the fully conjugated and highly fluorescent rhodamine dye. Among RSLs opened by acid, we have observed wide variation in the kinetics of the fluorescence turn-on process such that some probes would not be usable in situations where a rapid reading is desired or the pH fluctuates temporally. Herein we present a systematic investigation of the fluorescence turn-on kinetics of RSLs to probe the hypothesis that the reaction rates are influenced by the electronic properties of the spirolactam ring system. A series of 8 aniline-derived RSLs with para substituents ranging from electron-donating to electron-withdrawing was prepared from rhodamine B. The fluorescence turn-on rates are observed to increase by a factor of four as the substituent is tuned from methoxy to nitro. This effect is explained in terms of the destabilization of the reaction intermediate by the substituent. As the reaction rates increase across the series, a concomitant increase in fluorescence intensity is also observed. This result is attributed to an increase in the concentration of the fluorescent form of the dye and is consistent with the expected equilibrium properties of this system. These findings are applied to the design of a faster-reacting and more intensely fluorescent RSL pH probe.

Graphical abstract: Substituent effects on the turn-on kinetics of rhodamine-based fluorescent pH probes

Supplementary files

Article information

Article type
Paper
Submitted
20 Oct 2013
Accepted
21 Nov 2013
First published
22 Nov 2013

Org. Biomol. Chem., 2014,12, 526-533

Substituent effects on the turn-on kinetics of rhodamine-based fluorescent pH probes

W. L. Czaplyski, G. E. Purnell, C. A. Roberts, R. M. Allred and E. J. Harbron, Org. Biomol. Chem., 2014, 12, 526 DOI: 10.1039/C3OB42089B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements