Jump to main content
Jump to site search

Issue 12, 2014
Previous Article Next Article

Direct visualization of the interfacial position of colloidal particles and their assemblies

Author affiliations

Abstract

A method for direct visualization of the position of nanoscale colloidal particles at air–water interfaces is presented. After assembling hard (polystyrene, poly(methyl methacrylate), silica) or soft core–shell gold–hydrogel composite (Au@PNiPAAm) colloids at the air–water interface, butylcyanoacrylate is introduced to the interface via the gas phase. Upon contact with water, an anionic polymerization reaction of the monomer is initiated and a film of poly(butylcyanoacrylate) (PBCA) is generated, entrapping the colloids at their equilibrium position at the interface. We apply this method to investigate the formation of complex, binary assembly structures directly at the interface, to visualize soft, nanoscale hydrogel colloids in the swollen state, and to visualize and quantify the equilibrium position of individual micro- and nanoscale colloids at the air–water interface depending of the amount of charge present on the particle surface. We find that the degree of deprotonation of the carboxyl group shifts the air–water contact angle, which is further confirmed by colloidal probe atomic force microscopy. Remarkably, the contact angles determined for individual colloidal particles feature a significant distribution that greatly exceeds errors attributable to the size distribution of the colloids. This finding underlines the importance of accessing soft matter on an individual particle level.

Graphical abstract: Direct visualization of the interfacial position of colloidal particles and their assemblies

Back to tab navigation

Supplementary files

Article information


Submitted
21 Jan 2014
Accepted
04 Apr 2014
First published
07 Apr 2014

This article is Open Access

Nanoscale, 2014,6, 6879-6885
Article type
Paper
Author version available

Direct visualization of the interfacial position of colloidal particles and their assemblies

N. Vogel, J. Ally, K. Bley, M. Kappl, K. Landfester and C. K. Weiss, Nanoscale, 2014, 6, 6879
DOI: 10.1039/C4NR00401A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements