Issue 23, 2014

Supramolecular nanofibers of triamcinolone acetonide for uveitis therapy

Abstract

Supramolecular nanofibers of prodrugs hold advantages for drug release due to their high drug payload, sustained and constant drug release behavior, and stimuli responsiveness. In this study, we report on a supramolecular hydrogel mainly formed by a clinically used drug triamcinolone acetonide (TA). Such a hydrogel could only be prepared via an ester bond hydrolysis process from its prodrug of succinated triamcinolone acetonide (STA). The resulting hydrogel could constantly release TA in the in vitro release experiment. The TA hydrogel possessed an excellent transscleral penetration ability, as evaluated by the in vitro transscleral transport study. The developed TA hydrogel also exhibited a great ocular compatibility in rats, as indicated by the optical coherence tomography (OCT) images, HE observation, and glial fibrillary acidic protein (GFAP) and vimentin immuno-staining assays of the retinas. Our TA hydrogel showed a decreased efficacy to inhibit ocular inflammation in the rat's experiment autoimmune uveitis (EAU) model compared to the commercial TA suspension (Transton®), but without causing complications such as high intraocular pressure and cataracts. These promising properties of the hydrogel indicated its great potential for the treatment of eye diseases.

Graphical abstract: Supramolecular nanofibers of triamcinolone acetonide for uveitis therapy

Supplementary files

Article information

Article type
Paper
Submitted
18 Aug 2014
Accepted
06 Oct 2014
First published
07 Oct 2014

Nanoscale, 2014,6, 14488-14494

Supramolecular nanofibers of triamcinolone acetonide for uveitis therapy

X. Li, Y. Wang, C. Yang, S. Shi, L. Jin, Z. Luo, J. Yu, Z. Zhang, Z. Yang and H. Chen, Nanoscale, 2014, 6, 14488 DOI: 10.1039/C4NR04761C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements