Issue 22, 2014

The effect of surface hydrogenation of metal oxides on the nanomorphology and the charge generation efficiency of polymer blend solar cells

Abstract

In this work, the effect of surface hydrogenation of different metal oxides, in particular molybdenum and tungsten oxides widely used to enhance hole extraction and zinc and titanium oxides widely used to enhance electron extraction, on the nanomorphology and the charge generation efficiency of polymer blend solar cells is investigated. It was found that photoactive layers based on blends using different polymers, in particular poly(3-hexythiophene) (P3HT) and poly[(9-(1-octylnonyl)-9H-carbazole-2,7-diyl)-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl] (PCDTBT), which normally differ in both morphology and electronic structure, benefited, for both polymers, from deposition on metal oxides with high surface hydrogen content, in the sense that they exhibited improved crystallinity/order as revealed from X-ray diffraction, UV-vis absorption and elipsometric measurements. As a result, increased charge generation efficiencies and reduced recombination losses were measured in solar cells using metal oxides with highly hydrogenated surfaces at bottom electrodes and based on blends of either P3HT or PCDTBT, with a fullerene acceptor, as was verified by transient photocurrent measurements. The power conversion efficiency (PCE) of those cells reached values of 4.5% and 7.2%, respectively, an increase of about 30% compared with the cells using metal oxides with low surface hydrogen content.

Graphical abstract: The effect of surface hydrogenation of metal oxides on the nanomorphology and the charge generation efficiency of polymer blend solar cells

Supplementary files

Article information

Article type
Paper
Submitted
01 Aug 2014
Accepted
09 Sep 2014
First published
11 Sep 2014

Nanoscale, 2014,6, 13726-13739

Author version available

The effect of surface hydrogenation of metal oxides on the nanomorphology and the charge generation efficiency of polymer blend solar cells

M. Vasilopoulou, Nanoscale, 2014, 6, 13726 DOI: 10.1039/C4NR04408H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements