Issue 15, 2014

Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime

Abstract

We report a novel approach for fabricating gold nanostar-functionalized substrates for highly sensitive surface enhanced Raman spectroscopy (SERS)-based chemical sensing. Gold nanostars immobilized on a gold substrate via a Raman silent organic tether serve as the SERS substrate, and facilitate the chemical sensing of analytes that can either be chemisorbed or physisorbed on the nanostars. Our SERS substrates are capable of detecting chemisorbed 4-mercaptobenzoic acid at a concentration as low as 10 fM with a reproducible SERS enhancement factor of 109, and enable the semi-quantitative multiplexed identification of analytes from mixtures in which they have been dissolved in variable stoichiometry. Most importantly, they afford the detection of physisorbed analytes, such as crystal violet, with an excellent signal-to-noise ratio, hence serving as a versatile platform for the chemical identification of in principle any molecular analyte. These characteristics make a strong case for the use of our nanostar-based SERS substrate in practical chemical sensing applications.

Graphical abstract: Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime

Supplementary files

Article information

Article type
Paper
Submitted
08 May 2014
Accepted
19 May 2014
First published
26 May 2014

Nanoscale, 2014,6, 8891-8899

Author version available

Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime

A. S. D. S. Indrasekara, S. Meyers, S. Shubeita, L. C. Feldman, T. Gustafsson and L. Fabris, Nanoscale, 2014, 6, 8891 DOI: 10.1039/C4NR02513J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements