Issue 23, 2014

Speeding up the self-assembly of a DNA nanodevice using a variety of polar solvents

Abstract

The specific recognition and programmable assembly properties make DNA a potential material for nanodevices. However, the more intelligent the nanodevice is, the more complicated the structure of the nanodevice is, which limits the speed of DNA assembly. Herein, to address this problem, we investigate the performance of DNA Strand Displacement Reaction (DSDR) in a mixture of polar organic solvents and aqueous buffer and demonstrate that the organic polar solvent can speed up DNA self-assembly efficiently. Taking DSDR in 20% ethanol as an example, first we have demonstrated that the DSDR is highly accelerated in the beginning of the reaction and it can complete 60% of replacement reactions (160% enhancement compared with aqueous buffer) in the first 300 seconds. Secondly, we calculated that the ΔΔG of the DSDR in 20% ethanol (−18.2 kcal mol−1) is lower than that in pure aqueous buffer (−32.6 kcal mol−1), while the activation energy is lowered by introducing ethanol. Finally, we proved that the DSDR on the electrode surface can also be accelerated using this simple strategy. More importantly, to test the efficacy of this approach in nanodevices with a complicated and slow DNA self-assembly process, we apply this strategy in the hybridization chain reaction (HCR) and prove the acceleration is fairly obvious in 20% ethanol, which demonstrates the feasibility of the proposed strategy in DNA nanotechnology and DNA-based biosensors.

Graphical abstract: Speeding up the self-assembly of a DNA nanodevice using a variety of polar solvents

Supplementary files

Article information

Article type
Communication
Submitted
26 Apr 2014
Accepted
09 May 2014
First published
22 May 2014

Nanoscale, 2014,6, 14153-14157

Author version available

Speeding up the self-assembly of a DNA nanodevice using a variety of polar solvents

D. kang, R. Duan, Y. Tan, F. Hong, B. Wang, Z. Chen, S. Xu, X. Lou, W. Wei, B. Yurke and F. Xia, Nanoscale, 2014, 6, 14153 DOI: 10.1039/C4NR02257B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements