Issue 3, 2014

Multimodal chemo–magnetic control of self-propelling microbots

Abstract

We report a controlled migration of an iron nanoparticle (FeNP) coated polymer micromotor. The otherwise diffusive motion of the motor was meticulously directed through an in situ pH-gradient and an external magnetic field. The self-propulsion owing to the asymmetric catalytic decomposition of peroxide fuel was directed through a pH gradient imposed across the motor-surface, while the magnetic field induced an external control on the movement and the speed of the motor. Interestingly, the sole influence of the pH gradient could move the motor as high as ∼25 body lengths per second, which was further magnified by the external assistance from the magnetic field. Applying a magnetic field against the pH directed motion helped in the quantitative experimental estimation of the force-field required to arrest the chemotactic migration. The influence of the coupled internal and external fields could halt, steer or reverse the direction the motor inside a microchannel, rotate the motor around a target, and deliver the motor to a cluster of cells. This study showcases a multimodal chemical–magnetic field regulated migration of micro-machines for sensing, transport, and delivery inside a fluidic environment.

Graphical abstract: Multimodal chemo–magnetic control of self-propelling microbots

Supplementary files

Article information

Article type
Paper
Submitted
04 Oct 2013
Accepted
21 Oct 2013
First published
25 Oct 2013

Nanoscale, 2014,6, 1398-1405

Multimodal chemo–magnetic control of self-propelling microbots

A. K. Singh, K. K. Dey, A. Chattopadhyay, T. K. Mandal and D. Bandyopadhyay, Nanoscale, 2014, 6, 1398 DOI: 10.1039/C3NR05294J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements