Issue 2, 2014

Shape-diversified silver nanostructures uniformly covered on aluminium micro-powders as effective SERS substrates

Abstract

Highly-sensitive, reliable and reproducible Raman-active substrates via a facile and organic-free method are reported. These intriguing hierarchical structures are formed through the uniform incorporation of silver (Ag) nanoflowers with aluminium (Al) micro-supporters. The underlying mechanism is systematically investigated, visualizing that the solvents used in galvanic displacement have a major effect on diversifying the reaction kinetics of Ag deposition. Moreover, the exploration of AgNO3 concentrations reveals a drastic transition of Ag morphologies, driven by the elimination of high-energy surfaces of Ag. In addition, the surface-modified Al@Ag structures with octadecyltrichlorosilane demonstrate both the non-wetting (contact angle = 157.2°), as well as easy droplet roll-off (contact angle hysteresis = 5.4°) characteristics, which further enables the tested targets to avoid being pinned at a static position upon detection. Finally, we find that the Ag nanoflower surfaces are corrugated with numerous nanogaps at interparticle sites, in such a way that allows the abundant active sites (referred to as “hot spots”) to amplify the Raman signal, and simultaneously maintain the sound reliability and reproducibility of Raman detection. These designs along with the fabrication strategy are anticipated to benefit versatile optical, optoelectronic and energy devices.

Graphical abstract: Shape-diversified silver nanostructures uniformly covered on aluminium micro-powders as effective SERS substrates

Supplementary files

Article information

Article type
Paper
Submitted
16 Sep 2013
Accepted
15 Oct 2013
First published
18 Oct 2013

Nanoscale, 2014,6, 811-816

Shape-diversified silver nanostructures uniformly covered on aluminium micro-powders as effective SERS substrates

C. Chen and C. Wong, Nanoscale, 2014, 6, 811 DOI: 10.1039/C3NR04956F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements