Issue 5, 2014

Cell growth and protein expression of Shewanella oneidensis in biofilms and hydrogel-entrapped cultures

Abstract

The performance of biofilm-based bioprocesses is difficult to predict and control because of the intrinsic heterogeneous and dynamic properties of microbial biofilms. Biofilm mimics, such as microbial cells entrapped in polymeric scaffolds that are permeable for nutrients, have been proposed to replace real biofilms to achieve long-term robust performance in engineering applications. However, the physiological differences between cells that are physically entrapped in a synthetic polymeric matrix and biofilm cells that are encased in a self-produced polymeric matrix remain unknown. In this study, using Shewanella oneidensis as a model organism and alginate hydrogel as a model synthetic matrix, we compared the cell growth and protein expression in entrapped cultures and biofilms. The hydrogel-entrapped cultures were found to exhibit a growth rate comparable with biofilms. There was no substantial difference in cell viability, surface charge, as well as hydrophobicity between the cells grown in alginate hydrogel and those grown in biofilms. However, the gel-entrapped cultures were found to be physiologically different from biofilms. The gel-entrapped cultures had a higher demand for metabolic energy. The siderophore-mediated iron uptake was repressed in the gel-entrapped cells. The presence of the hydrogel matrix decreased the expression of proteins involved in biofilm formation, while inducing the production of extracellular DNA (eDNA) in the gel-entrapped cultures. These results advance the fundamental understanding of the physiology of hydrogel-entrapped cells, which can lead to more efficient biofilm mimic-based applications.

Graphical abstract: Cell growth and protein expression of Shewanella oneidensis in biofilms and hydrogel-entrapped cultures

Supplementary files

Article information

Article type
Paper
Submitted
22 Nov 2013
Accepted
20 Feb 2014
First published
20 Feb 2014

Mol. BioSyst., 2014,10, 1035-1042

Cell growth and protein expression of Shewanella oneidensis in biofilms and hydrogel-entrapped cultures

Y. Zhang, C. K. Ng, Y. Cohen and B. Cao, Mol. BioSyst., 2014, 10, 1035 DOI: 10.1039/C3MB70520J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements