A novel picoliter droplet array for parallel real-time polymerase chain reaction based on double-inkjet printing†
Abstract
We developed and characterized a novel picoliter droplet-in-oil array generated by a double-inkjet printing method on a uniform hydrophobic silicon chip specifically designed for quantitative polymerase chain reaction (qPCR) analysis. Double-inkjet printing was proposed to efficiently address the evaporation issues of picoliter droplets during array generation on a planar substrate without the assistance of a humidifier or glycerol. The method utilizes piezoelectric inkjet printing equipment to precisely eject a reagent droplet into an oil droplet, which had first been dispensed on a hydrophobic and oleophobic substrate. No evaporation, random movement, or cross-contamination was observed during array fabrication and thermal cycling. We demonstrated the feasibility and effectiveness of this novel double-inkjet method for real-time PCR analysis. This method can readily produce multivolume droplet-in-oil arrays with volume variations ranging from picoliters to nanoliters. This feature would be useful for simultaneous multivolume PCR experiments aimed at wide and tunable dynamic ranges. These double-inkjet-based picoliter droplet arrays may have potential for multiplexed applications that require isolated containers for single-cell cultures, single molecular enzymatic assays, or digital PCR and provide an alternative option for generating droplet arrays on planar substrates without chemical patterning.
Please wait while we load your content...