Issue 16, 2014

Bacterial chemotaxis on SlipChip


This paper describes a simple and reusable microfluidic SlipChip device for studying bacterial chemotaxis based on free interface diffusion. The device consists of two glass plates with reconfigurable microwells and ducts, which can set up 20 parallel chemotaxis units as duplicates. In each unit, three nanoliter microwells and connecting ducts were assembled for pipette loading of a chemoeffector solution, bacterial suspension, and 1X PBS buffer solution. By a simple slipping operation, three microwells were disconnected from other units and interconnected by the ducts, which allowed the formation of diffusion concentration gradients of the chemoeffector for inducing cell migration from the cell microwell towards the other two microwells. The migration of cells in the microwells was monitored and accurately counted to evaluate chemotaxis. Moreover, the migrated cells were easily collected by pipetting for further studies after a slip step to reconnect the chemoeffector microwells. The performance of the device was characterized by comparing chemotaxis of two Escherichia coli species, using aspartic acid as the attractant and nitrate sulfate as the repellent. It also enables the separation of bacterial species from a mixture, based on the difference of chemotactic abilities, and collection of the cells with strong chemotactic phenomena for further studies off the chip.

Graphical abstract: Bacterial chemotaxis on SlipChip

Supplementary files

Article information

Article type
18 Feb 2014
21 May 2014
First published
21 May 2014

Lab Chip, 2014,14, 3074-3080

Author version available

Bacterial chemotaxis on SlipChip

C. Shen, P. Xu, Z. Huang, D. Cai, S. Liu and W. Du, Lab Chip, 2014, 14, 3074 DOI: 10.1039/C4LC00213J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity