Issue 4, 2014

Study of a direct current atmospheric pressure glow discharge in helium with wet aerosol sample introduction systems

Abstract

In this study a He DC atmospheric pressure glow discharge (APGD) is characterized under dry conditions and with the introduction of wet aerosols. The aerosols are generated by a conventional pneumatic nebulization system using a MicroMist nebulizer placed in a double pass spray chamber according to Scott or alternatively by a custom-built drop-on-demand (DOD) system based on printer cartridges. The experiments are performed at a He gas flow of 500 mL min−1 and 40 mA current. The influences of the H2O load on the discharge rotational temperature (Trot), excitation temperature (Texc) and the electron number density (ne) are determined. Temperature reductions when comparing dry and wet conditions are found to be around 500 K for the Trot and 240–400 K for the Texc. Detection limits for the elements Cd, Cu, Mg, Mn and Na are presented for pneumatic nebulization coupled to a continuous flow injection system. They are found to be between 10 μg L−1 for Na and 140 μg L−1 for Cu. In the case of the drop-on-demand system a value of 16 μg L−1 for Na was obtained. The applicability of the discharge to the determination of Na in a tap water sample at concentration levels of 20 mg L−1 is shown for both introduction systems and the accuracy of the results is found to be within 1.3 mg L−1 as compared to the result of inductively coupled plasma optical emission spectrometry (ICP-OES).

Graphical abstract: Study of a direct current atmospheric pressure glow discharge in helium with wet aerosol sample introduction systems

Article information

Article type
Paper
Submitted
11 Jun 2013
Accepted
18 Dec 2013
First published
19 Dec 2013

J. Anal. At. Spectrom., 2014,29, 674-680

Study of a direct current atmospheric pressure glow discharge in helium with wet aerosol sample introduction systems

K. K. Moß, K. Reinsberg and J. A. C. Broekaert, J. Anal. At. Spectrom., 2014, 29, 674 DOI: 10.1039/C3JA50190F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements