Issue 8, 2014

N-3 PUFA increase bioavailability and function of endothelial progenitor cells

Abstract

Background and Aims: Recent data suggest that n-3 PUFA exert beneficial effects on endothelial progenitor cell (EPC) biology. We sought to investigate whether these effects might be mediated by enhanced EPC in vitro function and/or in vivo bioavailability. Methods and Results: CACs and late-outgrowth EPCs were isolated from peripheral blood mononuclear cells obtained from 12 donor buffy-coats. The effect of n-3 PUFA (EPA : DHA = 0.9 : 1.5; 9 μM EPA plus 15 μM DHA) was tested on CAC/EPC viability, function (tube-formation) and pro-inflammatory molecule expression. Circulating EPC (cells positive for CD34, CD133 and kinase insert domain receptor – KDR cell-surface antigens by flow cytometry) number was evaluated in 20 healthy subjects (10 F/10 M, 32 ± 5 years), randomized to receive 4 mackerel or sardine portions per week for 6 weeks followed by a 6 week free-diet period. N-3 PUFA improved CAC and late-outgrowth EPC viability (p < 0.05) and the capacity to form tube-like structures in CACs (+38%; p < 0.05) and late-outgrowth EPCs (+15%; p < 0.05). ICAM-1 expression was reduced in both CACs (p < 0.05) and late-outgrowth EPCs (p < 0.05) and VCAM-1 in late-outgrowth EPCs (p < 0.005). N-3 PUFA significantly decreased TNF-α and MCP-1 expression in CACs and IL-8, TNF-α and MCP-1 in late-outgrowth EPCs (p < 0.05). Circulating EPC number significantly improved after 6 weeks of a fish-enriched diet (p < 0.01) and returned to baseline levels after a 6 week free-diet period (p < 0.01). Plasma EPA levels were independently and positively associated with EPC levels (p < 0.005). Conclusion: Our findings support the case of a beneficiary role played by n-3 PUFA in EPC function and bioavailability.

Graphical abstract: N-3 PUFA increase bioavailability and function of endothelial progenitor cells

Article information

Article type
Paper
Submitted
29 Nov 2013
Accepted
15 May 2014
First published
15 May 2014

Food Funct., 2014,5, 1881-1890

N-3 PUFA increase bioavailability and function of endothelial progenitor cells

V. Spigoni, C. Lombardi, M. Cito, A. Picconi, V. Ridolfi, R. Andreoli, N. Anelli, L. Gnudi, M. Goldoni, I. Zavaroni, R. Raddino and A. D. Cas, Food Funct., 2014, 5, 1881 DOI: 10.1039/C3FO60641D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements